Saturday, 16 September 2017

Autoregressive Gleitende Durchschnittliche Modelldefinition


Autoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 3 Dies ist der dritte und letzte Beitrag in der Mini-Serie für autoregressive Moving Average (ARMA) Modelle für die Zeitreihenanalyse. Weve eingeführt Autoregressive Modelle und Moving Average Modelle in den beiden vorherigen Artikeln. Jetzt ist es Zeit, sie zu einem anspruchsvolleren Modell zu kombinieren. Letztendlich wird dies zu den ARIMA - und GARCH-Modellen führen, die es uns ermöglichen, die Rendite der Anlagen und die Volatilität der Prognose vorherzusagen. Diese Modelle bilden die Grundlage für Handelssignale und Risikomanagementtechniken. Wenn Sie Teil 1 und Teil 2 gelesen haben, haben Sie gesehen, dass wir dazu neigen, ein Muster für unsere Analyse eines Zeitreihenmodells zu folgen. Ich wiederhole es kurz hier: Grundlagen - Warum interessieren wir uns für dieses bestimmte Modell Definition - Eine mathematische Definition, um Mehrdeutigkeit zu reduzieren. Correlogram - Plotten eines Beispielkorrelogramms, um ein Modellverhalten zu visualisieren. Simulation und Montage - Anpassung des Modells an Simulationen, um sicherzustellen, dass wir das Modell richtig verstanden haben. Echte Finanzdaten - Anwenden des Modells auf reale historische Vermögenspreise. Vorhersage - Prognostieren Sie nachfolgende Werte, um Handelssignale oder Filter aufzubauen. Um diesem Artikel zu folgen, ist es ratsam, einen Blick auf die früheren Artikel zur Zeitreihenanalyse zu werfen. Sie können alle hier gefunden werden. Bayesian Information Criterion Im Teil 1 dieser Artikel-Serie haben wir das Akaike Information Criterion (AIC) als Mittel zur Unterstützung der Wahl zwischen den einzelnen besten Zeitreihenmodellen betrachtet. Ein eng verwandtes Werkzeug ist das Bayesian Information Criterion (BIC). Im Wesentlichen hat es ein ähnliches Verhalten wie die AIC, dass es Modelle mit zu vielen Parametern bestraft. Dies kann zu Überbeanspruchungen führen. Der Unterschied zwischen der BIC und AIC ist, dass die BIC ist strenger mit seiner Bestrafung von zusätzlichen Parametern. Bayesian Information Criterion Wenn wir die Likelihood-Funktion für ein statistisches Modell mit k Parametern und L die Wahrscheinlichkeit maximieren. Dann ist das Bayessche Informationskriterium gegeben durch: wobei n die Anzahl der Datenpunkte in der Zeitreihe ist. Bei der Auswahl geeigneter ARMA (p, q) Modelle werden wir den AIC und den BIC verwenden. Ljung-Box Test In Teil 1 dieser Artikel-Serie Rajan erwähnt in der Disqus kommentiert, dass die Ljung-Box-Test angemessener als die Verwendung der Akaike Information Criterion des Bayesian Information Criterion bei der Entscheidung, ob ein ARMA-Modell war eine gute Passform zu einer Zeit Serie. Der Ljung-Box-Test ist ein klassischer Hypothesentest, der dazu dient, zu testen, ob sich ein Satz von Autokorrelationen eines eingebauten Zeitreihenmodells signifikant von Null unterscheidet. Der Test testet nicht jede einzelne Verzögerung nach Zufälligkeit, sondern testet die Zufälligkeit über eine Gruppe von Verzögerungen. Ljung-Box-Test Wir definieren die Nullhypothese als: Die Zeitreihendaten bei jeder Verzögerung sind i. i.d .. das heißt, die Korrelationen zwischen den Populationsreihenwerten sind Null. Wir definieren die alternative Hypothese als: Die Zeitreihendaten sind nicht i. i.d. Und besitzen serielle Korrelation. Wir berechnen die folgende Teststatistik. Q: Wenn n die Länge der Zeitreihenprobe ist, ist k die Stichprobe Autokorrelation bei der Verzögerung k und h die Anzahl der Verzögerungen unter dem Test. Die Entscheidungsregel, ob die Nullhypothese zurückgewiesen werden soll, besteht darin, zu überprüfen, ob Q gt chi2 für eine chi-quadrierte Verteilung mit h Freiheitsgraden am 100 (1-alpha) - ten Perzentil ist. Während die Details des Tests etwas kompliziert erscheinen können, können wir in der Tat R verwenden, um den Test für uns zu berechnen und das Verfahren etwas zu vereinfachen. Autogressive Moving Average (ARMA) Modelle der Ordnung p, q Nun, da wir über den BIC und den Ljung-Box-Test diskutierten, waren wir bereit, unser erstes gemischtes Modell, nämlich den autoregressiven Moving Average der Ordnung p, q oder ARMA (p, Q). Bisher haben wir autoregressive Prozesse und gleitende Durchschnittsprozesse betrachtet. Das frühere Modell betrachtet sein eigenes Verhalten in der Vergangenheit als Input für das Modell und als solche Versuche, Marktteilnehmer-Effekte, wie Impuls und Mittelwert-Reversion im Aktienhandel zu erfassen. Das letztere Modell wird verwendet, um Schock Informationen zu einer Serie zu charakterisieren, wie eine Überraschung Einkommen Ankündigung oder unerwartete Ereignis (wie die BP Deepwater Horizon Ölpest). Daher versucht ein ARMA-Modell, diese beiden Aspekte bei der Modellierung finanzieller Zeitreihen zu erfassen. Beachten Sie, dass ein ARMA-Modell nicht berücksichtigt Volatilität Clustering, eine wichtige empirische Phänomene von vielen finanziellen Zeitreihen. Es ist kein bedingt heteroszendierendes Modell. Dafür müssen wir auf die ARCH - und GARCH-Modelle warten. Definition Das ARMA-Modell (p, q) ist eine lineare Kombination zweier linearer Modelle und somit selbst noch linear: Autoregressives Moving Average Modell der Ordnung p, q Ein Zeitreihenmodell ist ein autoregressives gleitendes Durchschnittsmodell der Ordnung p, q . ARMA (p, q), wenn: Anfang xt alpha1 x alpha2 x ldots wt beta1 w beta2 w ldots betaq w end Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe vorhergehender Artikel) können wir das obige als Funktion theta und phi folgendermaßen umschreiben: Wir können einfach erkennen, dass wir durch die Einstellung von p neq 0 und q0 das AR (p) - Modell erhalten. Wenn wir p 0 und q neq 0 setzen, erhalten wir das MA (q) - Modell. Eines der wichtigsten Merkmale des ARMA-Modells ist, dass es sparsam und redundant in seinen Parametern ist. Das heißt, ein ARMA-Modell erfordert oft weniger Parameter als ein AR (p) - oder MA (q) - Modell alleine. Darüber hinaus, wenn wir die Gleichung in Bezug auf die BSO umschreiben, dann die theta und phi Polynome können manchmal gemeinsam einen gemeinsamen Faktor, so dass ein einfacheres Modell. Simulationen und Correlogramme Wie bei den autoregressiven und gleitenden Durchschnittsmodellen simulieren wir nun verschiedene ARMA-Serien und versuchen dann, ARMA-Modelle an diese Realisierungen anzupassen. Wir führen dies aus, weil wir sicherstellen wollen, dass wir das Anpassungsverfahren verstehen, einschließlich der Berechnung von Konfidenzintervallen für die Modelle sowie sicherzustellen, dass das Verfahren tatsächlich vernünftige Schätzungen für die ursprünglichen ARMA-Parameter wiederherstellt. In Teil 1 und Teil 2 haben wir manuell die AR - und MA-Serie konstruiert, indem wir N Abtastwerte aus einer Normalverteilung ziehen und dann das spezifische Zeitreihenmodell unter Verwendung von Verzögerungen dieser Abtastwerte herstellen. Allerdings gibt es einen einfacheren Weg, um AR-, MA-, ARMA - und sogar ARIMA-Daten zu simulieren, einfach durch die Verwendung der arima. sim-Methode in R. Wir beginnen mit dem einfachsten nicht-trivialen ARMA-Modell, nämlich dem ARMA (1,1 ) Modell. Das heißt, ein autoregressives Modell der Ordnung eins kombiniert mit einem gleitenden Durchschnittsmodell der Ordnung eins. Ein solches Modell hat nur zwei Koeffizienten, alpha und beta, die die ersten Verzögerungen der Zeitreihe selbst und die schockweißen Rauschterme darstellen. Ein solches Modell ist gegeben durch: Wir müssen die Koeffizienten vor der Simulation angeben. Lets take alpha 0.5 und beta -0.5: Die Ausgabe ist wie folgt: Lets auch das Korrektogramm zeichnen: Wir können sehen, dass es keine signifikante Autokorrelation, die von einem ARMA (1,1) - Modell erwartet wird. Schließlich können wir versuchen, die Koeffizienten und deren Standardfehler mit Hilfe der Arimafunktion zu bestimmen: Wir können die Konfidenzintervalle für jeden Parameter mit Hilfe der Standardfehler berechnen: Die Konfidenzintervalle enthalten die wahren Parameterwerte für beide Fälle 95 Konfidenzintervalle sehr breit sind (eine Folge der hinreichend großen Standardfehler). Jetzt versuchen wir ein ARMA (2,2) Modell. Das heißt, ein AR (2) - Modell kombiniert mit einem MA (2) - Modell. Für dieses Modell müssen wir vier Parameter angeben: alpha1, alpha2, beta1 und beta2. Nehmen wir alpha1 0.5, alpha2-0.25 beta10.5 und beta2-0.3: Die Ausgabe unseres ARMA (2,2) - Modells ist wie folgt: Und die entsprechende autocorelation: Wir können nun versuchen, ein ARMA (2,2) - Modell an Die Daten: Wir können auch die Konfidenzintervalle für jeden Parameter berechnen: Beachten Sie, dass die Konfidenzintervalle für die Koeffizienten für die gleitende Durchschnittskomponente (beta1 und beta2) nicht tatsächlich den ursprünglichen Parameterwert enthalten. Dies beschreibt die Gefahr des Versuchens, Modelle an Daten anzupassen, auch wenn wir die wahren Parameterwerte kennen. Für Handelszwecke benötigen wir jedoch nur eine Vorhersagekraft, die den Zufall übertrifft und genügend Gewinn über die Transaktionskosten erzeugt, um rentabel zu sein auf lange Sicht. Nun, da wir einige Beispiele für simulierte ARMA-Modelle gesehen haben, brauchen wir Mechanismus für die Auswahl der Werte von p und q bei der Anpassung an die Modelle zu echten Finanzdaten. Auswahl des besten ARMA-Modells (p, q) Um zu bestimmen, welche Ordnung p, q des ARMA-Modells für eine Reihe geeignet ist, müssen wir die AIC (oder BIC) über eine Teilmenge von Werten für p, q und verwenden Dann den Ljung-Box-Test anwenden, um zu bestimmen, ob eine gute Passung für bestimmte Werte von p, q erzielt worden ist. Um diese Methode zu zeigen, werden wir zunächst einen speziellen ARMA (p, q) Prozess simulieren. Wir werden dann alle paarweisen Werte von p in und qin durchschleifen und die AIC berechnen. Wir wählen das Modell mit dem niedrigsten AIC aus und führen dann einen Ljung-Box-Test auf die Residuen durch, um festzustellen, ob wir eine gute Passform erreicht haben. Zunächst wird eine ARMA (3,2) - Serie simuliert: Wir werden nun ein Objekt final erstellen, um den besten Modell-Fit und den niedrigsten AIC-Wert zu speichern. Wir schleifen über die verschiedenen p, q-Kombinationen und verwenden das aktuelle Objekt, um die Anpassung eines ARMA (i, j) - Modells für die Schleifenvariablen i und j zu speichern. Wenn der aktuelle AIC kleiner als irgendein vorher berechneter AIC ist, setzen wir die letzte AIC auf diesen aktuellen Wert und wählen diese Reihenfolge. Nach Beendigung der Schleife haben wir die Reihenfolge der in final. order gespeicherten ARMA-Modelle, und die ARIMA (p, d, q) passen sich an (mit der integrierten d-Komponente auf 0 gesetzt), die als final. arma gespeichert ist , Ordnung und ARIMA-Koeffizienten: Wir können sehen, dass die ursprüngliche Ordnung des simulierten ARMA-Modells wiederhergestellt wurde, nämlich mit p3 und q2. Wir können das Corelogramm der Residuen des Modells darstellen, um zu sehen, ob sie wie eine Realisierung von diskreten weißen Rauschen (DWN) aussehen: Das Corelogramm sieht tatsächlich wie eine Realisierung von DWN aus. Schließlich führen wir den Ljung-Box-Test für 20 Verzögerungen durch, um dies zu bestätigen: Beachten Sie, dass der p-Wert größer als 0,05 ist, was besagt, dass die Residuen auf dem 95-Level unabhängig sind und somit ein ARMA-Modell (3,2) Gutes Modell passend. Offensichtlich sollte dies der Fall sein, da wir die Daten selbst simuliert haben. Dies ist jedoch genau das Verfahren, das wir verwenden werden, wenn wir ARMA (p, q) - Modelle im folgenden Abschnitt zum SampP500-Index passen. Finanzdaten Nachdem wir nun das Verfahren zur Auswahl des optimalen Zeitreihenmodells für eine simulierte Serie skizziert haben, ist es relativ einfach, diese auf Finanzdaten anzuwenden. Für dieses Beispiel wollen wir erneut den SampP500 US Equity Index wählen. Wir können die täglichen Schlusskurse unter Verwendung von quantmod herunterladen und dann den Protokoll-Rücklauf-Stream erzeugen: Mit dem AIC können Sie das gleiche Anpassungsverfahren wie für die oben beschriebene simulierte ARMA (3,2) - Reihe des SampP500 durchführen: Das am besten passende Modell Hat die Ordnung ARMA (3,3): Hier können die Residuen des angepassten Modells dem SampP500 log täglichen Retourenstrom zugewiesen werden: Beachten Sie, dass es einige signifikante Peaks gibt, vor allem bei höheren Lags. Dies deutet auf eine schlechte Passform hin. Wir können einen Ljung-Box-Test durchführen, um festzustellen, ob wir statistische Beweise dafür haben: Wie wir vermuteten, ist der p-Wert kleiner als 0,05 und als solche können wir nicht sagen, dass die Residuen eine Realisierung von diskreten weißen Rauschen sind. Daher gibt es eine zusätzliche Autokorrelation in den Residuen, die nicht durch das eingebaute ARMA (3,3) - Modell erklärt wird. Next Steps Wie wir in dieser Artikelreihe besprochen haben, haben wir in den SampP500-Serien, insbesondere in den Perioden 2007-2008, Hinweise auf bedingte Heterosedastizität (Volatilitäts-Clustering) gefunden. Wenn wir ein GARCH-Modell später in der Artikel-Serie verwenden, werden wir sehen, wie diese Autokorrelationen zu beseitigen. In der Praxis sind ARMA-Modelle nie generell gut für Log-Aktien-Renditen. Wir müssen die bedingte Heterosedastizität berücksichtigen und eine Kombination von ARIMA und GARCH verwenden. Der nächste Artikel wird ARIMA betrachten und zeigen, wie die integrierte Komponente unterscheidet sich von der ARMA-Modell, das wir in diesem Artikel betrachtet haben. Klicken Sie unten, um mehr darüber zu erfahren. Die Informationen auf dieser Website ist die Meinung der einzelnen Autoren auf der Grundlage ihrer persönlichen Beobachtung, Forschung und jahrelange Erfahrung. Der Herausgeber und seine Autoren sind nicht registrierte Anlageberater, Rechtsanwälte, CPAs oder andere Finanzdienstleister und machen keine Rechts-, Steuer-, Rechnungswesen, Anlageberatung oder andere professionelle Dienstleistungen. Die Informationen, die von dieser Web site angeboten werden, sind nur allgemeine Ausbildung. Weil jeder Einzelne sachliche Situation anders ist, sollte der Leser seinen persönlichen Berater suchen. Weder der Autor noch der Herausgeber übernehmen jegliche Haftung oder Verantwortung für Fehler oder Unterlassungen und haben weder eine Haftung noch Verantwortung gegenüber Personen oder Körperschaften in Bezug auf Schäden, die direkt oder indirekt durch die auf dieser Website enthaltenen Informationen verursacht oder vermutet werden. Benutzung auf eigene Gefahr. Darüber hinaus kann diese Website erhalten finanzielle Entschädigung von den Unternehmen erwähnt durch Werbung, Affiliate-Programme oder auf andere Weise. Preise und Angebote von Inserenten auf dieser Website ändern sich häufig, manchmal ohne Vorankündigung. Während wir uns bemühen, rechtzeitige und genaue Informationen aufrechtzuerhalten, können Angebot Details veraltet sein. Besucher sollten daher die Bedingungen dieser Angebote vor der Teilnahme an ihnen überprüfen. Der Autor und sein Herausgeber haften nicht für die Aktualisierung von Informationen und haften nicht für Inhalte, Produkte und Dienstleistungen von Drittanbietern, auch wenn sie über Hyperlinks und Anzeigen auf dieser Website aufgerufen werden. Dokumentation ist das unbedingte Mittel des Prozesses, und x03C8 (L) ist a (1 x03C8 1 L x03C8 2 L 2 x 2026). Anmerkung: Die Constant-Eigenschaft eines arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Stabil ist. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Zusätzlich ist das Verfahren kausal, vorausgesetzt das MA-Polynom ist invertierbar. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox forciert Stabilität und Invertierbarkeit von ARMA Prozessen. Wenn Sie ein ARMA-Modell mit Arima angeben. Erhalten Sie einen Fehler, wenn Sie Koeffizienten eingeben, die nicht einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom entsprechen. Ähnlich erfordert die Schätzung während der Schätzung Stationaritäts - und Invertibilitätsbeschränkungen. Literatur 1 Wold, H. Eine Studie in der Analyse stationärer Zeitreihen. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr LandAutoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 1 Im letzten Artikel sahen wir zufällige Wanderungen und weißes Rauschen als grundlegende Zeitreihenmodelle für bestimmte Finanzinstrumente , Wie die täglichen Aktien - und Aktienindexpreise. Wir fanden, dass in einigen Fällen ein zufälliges Wanderungsmodell nicht ausreicht, um das vollständige Autokorrelationsverhalten des Instruments zu erfassen, das anspruchsvollere Modelle motiviert. In den folgenden Artikeln werden drei Modelltypen diskutiert, nämlich das Autoregressive (AR) - Modell der Ordnung p, das Moving Average (MA) - Modell der Ordnung q und das gemischte Autogressive Moving Average (ARMA) - Modell der Ordnung p , Q. Diese Modelle werden uns helfen zu erfassen oder zu erklären, mehr der seriellen Korrelation in einem Instrument. Letztlich werden sie uns ein Mittel zur Prognose der künftigen Preise bieten. Es ist jedoch bekannt, dass finanzielle Zeitreihen eine Eigenschaft besitzen, die als Volatilitäts-Clusterung bekannt ist. Das heißt, die Flüchtigkeit des Instruments ist nicht zeitlich konstant. Der technische Begriff für dieses Verhalten wird als bedingte Heteroskedastizität bezeichnet. Da die AR-, MA - und ARMA-Modelle nicht bedingt heteroskedastisch sind, dh sie nicht das Volatilitäts-Clustering berücksichtigen, benötigen wir letztlich ein anspruchsvolleres Modell für unsere Prognosen. Zu diesen Modellen gehören das Autogressive Conditional Heteroskedastic (ARCH) Modell und das Generalized Autogressive Conditional Heteroskedastic (GARCH) Modell und die vielen Varianten davon. GARCH ist in Quantfinance besonders bekannt und wird vor allem für finanzielle Zeitreihensimulationen als Mittel zur Risikoabschätzung eingesetzt. Wie bei allen QuantStart-Artikeln möchte ich aber diese Modelle aus einfacheren Versionen aufbauen, damit wir sehen können, wie jede neue Variante unsere Vorhersagefähigkeit ändert. Trotz der Tatsache, dass AR, MA und ARMA relativ einfache Zeitreihenmodelle sind, sind sie die Grundlage für kompliziertere Modelle wie den Autoregressive Integrated Moving Average (ARIMA) und die GARCH-Familie. Daher ist es wichtig, dass wir sie studieren. Einer unserer ersten Trading-Strategien in der Zeitreihe Artikel-Serie wird es sein, ARIMA und GARCH zu kombinieren, um die Preise n Perioden im Voraus vorherzusagen. Allerdings müssen wir warten, bis weve diskutiert sowohl ARIMA und GARCH separat, bevor wir sie auf eine echte Strategie anwenden Wir werden in diesem Artikel werden wir einige neue Zeitreihen-Konzepte, die gut für die restlichen Methoden, nämlich streng zu skizzieren Stationarität und dem Akaike-Informationskriterium (AIC). Im Anschluss an diese neuen Konzepte werden wir dem traditionellen Muster für das Studium neuer Zeitreihenmodelle folgen: Begründung - Die erste Aufgabe ist es, einen Grund dafür zu liefern, warum sich ein bestimmtes Modell als Quants interessierte. Warum stellen wir das Zeitreihenmodell vor Welche Auswirkungen kann es erfassen Was gewinnen wir (oder verlieren), indem wir zusätzliche Komplexität hinzufügen Definition - Wir müssen die vollständige mathematische Definition (und damit verbundene Notation) des Zeitreihenmodells zur Minimierung bereitstellen Jede Unklarheit. Eigenschaften der zweiten Ordnung - Wir diskutieren (und in einigen Fällen) die Eigenschaften zweiter Ordnung des Zeitreihenmodells, das sein Mittel, seine Varianz und seine Autokorrelationsfunktion enthält. Correlogram - Wir verwenden die Eigenschaften zweiter Ordnung, um ein Korrektramm einer Realisierung des Zeitreihenmodells zu zeichnen, um sein Verhalten zu visualisieren. Simulation - Wir simulieren Realisierungen des Zeitreihenmodells und passen dann das Modell an diese Simulationen an, um sicherzustellen, dass wir genaue Implementierungen haben und den Anpassungsprozess verstehen. Echte Finanzdaten - Wir passen das Zeitreihenmodell auf echte Finanzdaten an und betrachten das Korrektramm der Residuen, um zu sehen, wie das Modell die serielle Korrelation in der ursprünglichen Serie berücksichtigt. Vorhersage - Wir erstellen n-Schritt-Voraus-Prognosen des Zeitreihenmodells für besondere Realisierungen, um letztendlich Handelssignale zu erzeugen. Fast alle Artikel, die ich auf Zeitreihenmodellen schreibe, werden in dieses Muster fallen und es wird uns erlauben, die Unterschiede zwischen jedem Modell leicht zu vergleichen, da wir weitere Komplexität hinzufügen. Wurden zu Beginn mit Blick auf strenge Stationarität und die AIC. Strengst stationär Wir haben die Definition der Stationarität in dem Artikel über die serielle Korrelation. Da wir jedoch in die Reichweite vieler Finanzserien mit verschiedenen Frequenzen treten, müssen wir sicherstellen, dass unsere (eventuellen) Modelle die zeitlich variierende Volatilität dieser Serien berücksichtigen. Insbesondere müssen wir ihre Heteroskedastizität berücksichtigen. Wir werden auf dieses Problem stoßen, wenn wir versuchen, bestimmte Modelle zu historischen Serien zu passen. Grundsätzlich können nicht alle seriellen Korrelationen in den Resten von eingebauten Modellen berücksichtigt werden, ohne Heteroskedastizität zu berücksichtigen. Das bringt uns zurück zur Stationarität. Eine Serie ist nicht stationär in der Varianz, wenn sie zeitvariable Volatilität hat, per Definition. Dies motiviert eine rigorosere Definition der Stationarität, nämlich eine strenge Stationarität: Strengst stationäre Serie Ein Zeitreihenmodell ist streng stationär, wenn die gemeinsame statistische Verteilung der Elemente x, ldots, x die gleiche ist wie die von xm, ldots, xm, Für alle ti, m. Man kann an diese Definition nur denken, daß die Verteilung der Zeitreihen für jede zeitliche Verschiebung unverändert bleibt. Insbesondere sind das Mittel und die Varianz rechtzeitig für eine streng stationäre Reihe konstant und die Autokovarianz zwischen xt und xs (nur) hängt nur von der absoluten Differenz von t und s, t-s ab. In zukünftigen Beiträgen werden wir streng stationäre Serien besprechen. Akaike Information Criterion Ich erwähnte in früheren Artikeln, dass wir schließlich zu prüfen, wie die Wahl zwischen getrennten besten Modelle. Dies gilt nicht nur für die Zeitreihenanalyse, sondern auch für das maschinelle Lernen und generell für die Statistik im Allgemeinen. Die beiden Hauptmethoden (vorläufig) sind das Akaike Information Criterion (AIC) und das Bayesian Information Criterion (wie wir mit unseren Artikeln über Bayesian Statistics weiter vorankommen). Nun kurz die AIC, wie es in Teil 2 des ARMA Artikel verwendet werden. AIC ist im Wesentlichen ein Hilfsmittel zur Modellauswahl. Das heißt, wenn wir eine Auswahl von statistischen Modellen (einschließlich Zeitreihen) haben, dann schätzt die AIC die Qualität jedes Modells, relativ zu den anderen, die wir zur Verfügung haben. Sie basiert auf Informationstheorie. Das ist ein sehr interessantes, tiefes Thema, das wir leider nicht in zu viel Detail gehen können. Es versucht, die Komplexität des Modells, die in diesem Fall bedeutet die Anzahl der Parameter, wie gut es passt die Daten. Lets eine Definition: Akaike Information Criterion Wenn wir die Likelihood-Funktion für ein statistisches Modell, das k Parameter hat, und L maximiert die Wahrscheinlichkeit. Dann ist das Akaike Information Criterion gegeben durch: Das bevorzugte Modell, aus einer Auswahl von Modellen, hat die minium AIC der Gruppe. Sie können sehen, dass die AIC wächst mit der Anzahl der Parameter, k, erhöht, aber reduziert wird, wenn die negative Log-Likelihood erhöht. Im Wesentlichen bestraft sie Modelle, die übermäßig sind. Wir werden AR, MA und ARMA Modelle von unterschiedlichen Aufträgen erstellen und eine Möglichkeit, das beste Modell zu wählen, das zu einem bestimmten Datensatz passt, ist, die AIC zu verwenden. Dies ist, was gut tun, im nächsten Artikel, vor allem für ARMA Modelle. Autoregressive (AR) Modelle der Ordnung p Das erste Modell, das die Grundlage von Teil 1 bildet, ist das autoregressive Modell der Ordnung p, oft verkürzt zu AR (p). Im vorherigen Artikel betrachteten wir den zufälligen Weg. Wobei jeder Term xt nur von dem vorherigen Term x und einem stochastischen weißen Rauschterm abhängt, wt: Das autoregressive Modell ist einfach eine Erweiterung des zufälligen Wegs, der Terme weiter zurück in der Zeit enthält. Die Struktur des Modells ist linear. Das heißt, das Modell hängt linear von den vorherigen Bedingungen ab, wobei für jeden Term Koeffizienten vorliegen. Dies ist, wo die regressive kommt aus der autoregressive. Es ist im Wesentlichen ein Regressionsmodell, bei dem die vorherigen Begriffe die Prädiktoren sind. Autoregressives Modell der Ordnung p Ein Zeitreihenmodell ist ein autoregressives Modell der Ordnung p. AR (p), wenn: begin xt alpha1 x ldots alphap x wt sum p alpha x wt end Wo ist weißes Rauschen und alpha in mathbb, mit alphap neq 0 für einen autoregressiven p-order Prozess. Wenn wir den Backward Shift Operator betrachten. (Siehe vorheriger Artikel), dann können wir das obige als eine Funktion theta folgendermaßen umschreiben: begin thetap () xt (1 - alpha1 - alpha2 2 - ldots - alphap) xt wt Ende Vielleicht das erste, was über das AR (p) Ist, dass ein zufälliger Weg einfach AR (1) mit alpha1 gleich Eins ist. Wie oben erwähnt, ist das autogressive Modell eine Erweiterung des zufälligen Weges, so dass dies sinnvoll ist. Es ist einfach, Vorhersagen mit dem AR (p) - Modell zu jeder Zeit t vorzunehmen, sobald wir die alphai-Koeffizienten, unsere Schätzung, bestimmt haben Wird einfach: anfangen Hut t alpha1 x ldots alphap x end So können wir n-Schritt voraus Prognosen durch die Herstellung Hut t, Hut, Hut, etc. bis zu Hut. Tatsächlich werden wir, wenn wir die ARMA-Modelle in Teil 2 betrachten, die R-Vorhersagefunktion verwenden, um Prognosen (zusammen mit Standardfehler-Konfidenzintervallbändern) zu erzeugen, die uns helfen, Handelssignale zu erzeugen. Stationarität für autoregressive Prozesse Eines der wichtigsten Aspekte des AR (p) - Modells ist, dass es nicht immer stationär ist. Tatsächlich hängt die Stationarität eines bestimmten Modells von den Parametern ab. Ive berührte dieses vorher in einem vorhergehenden Artikel. Um zu bestimmen, ob ein AR (p) - Prozeß stationär ist oder nicht, müssen wir die charakteristische Gleichung lösen. Die charakteristische Gleichung ist einfach das autoregressive Modell, geschrieben in Rückwärtsverschiebung Form, auf Null gesetzt: Wir lösen diese Gleichung für. Damit das bestimmte autoregressive Verfahren stationär ist, brauchen wir alle Absolutwerte der Wurzeln dieser Gleichung, um Eins zu übersteigen. Dies ist eine äußerst nützliche Eigenschaft und ermöglicht es uns schnell zu berechnen, ob ein AR (p) - Prozeß stationär ist oder nicht. Wir betrachten einige Beispiele, um diese Idee konkret zu machen: Random Walk - Der AR (1) Prozess mit alpha1 1 hat die charakteristische Gleichung theta 1 -. Offensichtlich hat diese Wurzel 1 und als solche ist nicht stationär. AR (1) - Wenn wir alpha1 frac wählen, erhalten wir xt frac x wt. Dies ergibt eine charakteristische Gleichung von 1 - frac 0, die eine Wurzel von 4 gt 1 hat und somit dieses AR (1) - Verfahren stationär ist. AR (2) - Wenn wir alpha1 alpha2 frac setzen, erhalten wir xt frac x frac x wt. Seine charakteristische Gleichung wird - frac () () 0, die zwei Wurzeln von 1, -2 ergibt. Da es sich um eine Einheitswurzel handelt, handelt es sich um eine nichtstationäre Serie. Andere AR (2) - Serien können jedoch stationär sein. Eigenschaften der zweiten Ordnung Der Mittelwert eines AR (p) - Prozesses ist Null. Allerdings sind die Autokovarianzen und Autokorrelationen durch rekursive Funktionen, bekannt als die Yule-Walker-Gleichungen gegeben. Die vollständigen Eigenschaften sind unten angegeben: begin mux E (xt) 0 end begin gammak sum p alpha gamma, enspace k 0 end begin rhok sum p alphai rho, enspace k 0 end Beachten Sie, dass es notwendig ist, die alpha-Parameterwerte vor zu kennen Berechnen der Autokorrelationen. Nachdem wir die Eigenschaften zweiter Ordnung angegeben haben, können wir verschiedene Ordnungen von AR (p) simulieren und die entsprechenden Korrektramme darstellen. Simulationen und Correlogramme Beginnen wir mit einem AR (1) - Prozess. Dies ist ähnlich einem zufälligen Weg, außer dass alpha1 nicht gleich Eins haben muss. Unser Modell wird alpha1 0,6 haben. Der R-Code für die Erzeugung dieser Simulation ist wie folgt gegeben: Beachten Sie, dass unsere for-Schleife von 2 bis 100, nicht 1 bis 100, als xt-1 ausgeführt wird, wenn t0 nicht indexierbar ist. Ähnlich für AR (p) Prozesse höherer Ordnung muss t in dieser Schleife von p bis 100 reichen. Wir können die Realisierung dieses Modells und seines zugehörigen Korrelogramms mit Hilfe der Layout-Funktion darstellen: Lasst uns jetzt versuchen, einen AR (p) - Prozeß an die soeben erzeugten simulierten Daten anzupassen, um zu sehen, ob wir die zugrunde liegenden Parameter wiederherstellen können. Sie können daran erinnern, dass wir ein ähnliches Verfahren in dem Artikel über weiße Rauschen und zufällige Wanderungen durchgeführt. Wie sich herausstellt, bietet R einen nützlichen Befehl ar, um autoregressive Modelle zu passen. Wir können diese Methode verwenden, um uns zuerst die beste Ordnung p des Modells zu erzählen (wie durch die AIC oben bestimmt) und liefern uns mit Parameterschätzungen für das alphai, die wir dann verwenden können, um Konfidenzintervalle zu bilden. Für die Vollständigkeit können wir die x-Reihe neu erstellen: Jetzt verwenden wir den ar-Befehl, um ein autoregressives Modell an unseren simulierten AR (1) - Prozess anzupassen, wobei die maximale Wahrscheinlichkeitsschätzung (MLE) als Anpassungsverfahren verwendet wird. Wir werden zunächst die beste erhaltene Ordnung extrahieren: Der ar Befehl hat erfolgreich festgestellt, dass unser zugrunde liegendes Zeitreihenmodell ein AR (1) Prozess ist. Wir erhalten dann die Alpha-Parameter (s) Schätzungen: Die MLE-Prozedur hat eine Schätzung erzeugt, Hut 0,523, die etwas niedriger als der wahre Wert von alpha1 0,6 ist. Schließlich können wir den Standardfehler (mit der asymptotischen Varianz) verwenden, um 95 Konfidenzintervalle um den / die zugrunde liegenden Parameter zu konstruieren. Um dies zu erreichen, erstellen wir einfach einen Vektor c (-1,96, 1,96) und multiplizieren ihn dann mit dem Standardfehler: Der wahre Parameter fällt in das 95 Konfidenzintervall, da wir von der Tatsache erwarten, dass wir die Realisierung aus dem Modell spezifisch generiert haben . Wie wäre es, wenn wir die alpha1 -0.6 ändern, können wir wie folgt ein AR (p) - Modell mit ar: Wiederherstellen wir die richtige Reihenfolge des Modells, mit einer sehr guten Schätzung Hut -0.597 von alpha1-0.6. Wir sehen auch, dass der wahre Parameter wieder innerhalb des Konfidenzintervalls liegt. Fügen wir mehr Komplexität zu unseren autoregressiven Prozessen hinzu, indem wir ein Modell der Ordnung 2 simulieren. Insbesondere setzen wir alpha10.666, setzen aber auch alpha2 -0.333. Heres den vollständigen Code, um die Realisierung zu simulieren und zu plotten, sowie das Korrelogram für eine solche Serie: Wie zuvor sehen wir, dass sich das Korrelogramm signifikant von dem des weißen Rauschens unterscheidet, wie man es erwarten kann. Es gibt statistisch signifikante Peaks bei k1, k3 und k4. Wieder einmal wollten wir den ar-Befehl verwenden, um ein AR (p) - Modell zu unserer zugrundeliegenden AR (2) Realisierung zu passen. Die Prozedur ist ähnlich wie bei der AR (1) - Sitzung: Die korrekte Reihenfolge wurde wiederhergestellt und die Parameterschätzungen Hut 0.696 und Hut -0.395 sind nicht zu weit weg von den wahren Parameterwerten von alpha10.666 und alpha2-0.333. Beachten Sie, dass wir eine Konvergenz-Warnmeldung erhalten. Beachten Sie auch, dass R tatsächlich die arima0-Funktion verwendet, um das AR-Modell zu berechnen. AR (p) - Modelle sind ARIMA (p, 0, 0) - Modelle und somit ein AR-Modell ein Spezialfall von ARIMA ohne Moving Average (MA) - Komponente. Nun auch mit dem Befehl arima, um Konfidenzintervalle um mehrere Parameter zu erstellen, weshalb wir vernachlässigt haben, es hier zu tun. Nachdem wir nun einige simulierte Daten erstellt haben, ist es an der Zeit, die AR (p) - Modelle auf finanzielle Asset-Zeitreihen anzuwenden. Financial Data Amazon Inc. Lets beginnen mit dem Erwerb der Aktienkurs für Amazon (AMZN) mit quantmod wie im letzten Artikel: Die erste Aufgabe ist es, immer den Preis für eine kurze visuelle Inspektion. In diesem Fall auch die täglichen Schlusskurse: Youll bemerken, dass quantmod einige Formatierungen für uns, nämlich das Datum, und ein etwas hübscheres Diagramm als die üblichen R-Diagramme hinzufügt: Wir werden jetzt die logarithmische Rückkehr von AMZN und dann die erste nehmen Um die ursprüngliche Preisreihe von einer nichtstationären Serie auf eine (potentiell) stationäre zu konvertieren. Dies ermöglicht es uns, Äpfel mit Äpfeln zwischen Aktien, Indizes oder anderen Vermögenswerten zu vergleichen, für die Verwendung in späteren multivariaten Statistiken, wie bei der Berechnung einer Kovarianzmatrix. Wenn Sie eine ausführliche Erklärung, warum Protokoll Rückkehr bevorzugen möchten, werfen Sie einen Blick auf diesen Artikel über bei Quantivity. Erstellt eine neue Serie, amznrt. Um unsere differenzierten Logarithmen zurückzuhalten: Wieder einmal können wir die Serie darstellen: In diesem Stadium wollen wir das Korrektramm zeichnen. Sie suchten, um zu sehen, ob die differenzierte Reihe wie weißes Rauschen aussieht. Wenn es nicht dann gibt es unerklärliche serielle Korrelation, die durch ein autoregressives Modell erklärt werden könnte. Wir bemerken einen statistisch signifikanten Peak bei k2. Daher gibt es eine vernünftige Möglichkeit der unerklärlichen seriellen Korrelation. Seien Sie sich jedoch bewusst, dass dies aufgrund der Stichprobe. Als solches können wir versuchen, ein AR (p) - Modell an die Serie anzupassen und Konfidenzintervalle für die Parameter zu erzeugen: Die Anpassung des ar-autoregressiven Modells an die erste Reihe differenzierte Serien von Logarithmen erzeugt ein AR (2) - Modell mit Hut -0,0278 Und hat -0.0687. Ive auch die aysmptotische Varianz, so dass wir berechnen können Standard-Fehler für die Parameter und erzeugen Vertrauen Intervalle. Wir wollen sehen, ob null Teil des 95 Konfidenzintervalls ist, als ob es ist, es reduziert unser Vertrauen, dass wir ein echtes zugrunde liegendes AR (2) - Verfahren für die AMZN-Serie haben. Um die Konfidenzintervalle auf der 95-Ebene für jeden Parameter zu berechnen, verwenden wir die folgenden Befehle. Wir nehmen die Quadratwurzel des ersten Elements der asymptotischen Varianzmatrix auf, um einen Standardfehler zu erzeugen, dann erzeugen Sie Konfidenzintervalle, indem wir sie mit -1,96 bzw. 1,96 für die 95-Ebene multiplizieren: Beachten Sie, dass dies bei Verwendung der Arima-Funktion einfacher wird , Aber gut bis Teil 2 warten, bevor es richtig eingeführt. Somit können wir sehen, dass für alpha1 Null innerhalb des Konfidenzintervalls enthalten ist, während für alpha2 Null nicht im Konfidenzintervall enthalten ist. Daher sollten wir sehr vorsichtig sein, wenn wir denken, dass wir tatsächlich ein zugrundeliegendes generatives AR (2) - Modell für AMZN haben. Insbesondere berücksichtigen wir, dass das autoregressive Modell nicht das Volatilitäts-Clustering berücksichtigt, was zu einer Clusterbildung der seriellen Korrelation in finanziellen Zeitreihen führt. Wenn wir die ARCH - und GARCH-Modelle in späteren Artikeln betrachten, werden wir dies berücksichtigen. Wenn wir kommen, um die volle Arima-Funktion in den nächsten Artikel verwenden, werden wir Vorhersagen der täglichen Log-Preis-Serie, um uns zu ermöglichen, Trading-Signale zu schaffen. SampP500 US Equity Index Zusammen mit einzelnen Aktien können wir auch den US Equity Index, den SampP500, berücksichtigen. Lets alle vorherigen Befehle zu dieser Serie und produzieren die Plots wie zuvor: Wir können die Preise: Wie zuvor, erstellen Sie auch die erste Ordnung Differenz der Log-Schlusskurse: Wieder einmal können wir die Serie plotten: Es ist klar Aus dieser Grafik, dass die Volatilität nicht in der Zeit stationär ist. Dies spiegelt sich auch in der Darstellung des Korrelogramms wider. Es gibt viele Peaks, einschließlich k1 und k2, die statistisch signifikant über ein weißes Rauschmodell hinausgehen. Darüber hinaus sehen wir Hinweise auf Langzeitgedächtnisprozesse, da es einige statistisch signifikante Peaks bei k16, k18 und k21 gibt: Letztlich benötigen wir ein komplexeres Modell als ein autoregressives Modell der Ordnung p. Allerdings können wir in diesem Stadium noch versuchen, ein solches Modell anzupassen. Wir sehen, was wir bekommen, wenn wir dies tun: Mit ar erzeugt ein AR (22) - Modell, dh ein Modell mit 22 Nicht-Null-Parametern Was bedeutet dies sagen uns Es ist bezeichnend, dass es wahrscheinlich viel mehr Komplexität in der seriellen Korrelation als Ein einfaches lineares Modell der vergangenen Preise kann wirklich erklären. Jedoch wussten wir dies bereits, weil wir sehen können, dass es eine signifikante serielle Korrelation in der Volatilität gibt. Betrachten wir zum Beispiel die sehr volatile Periode um 2008. Dies motiviert den nächsten Satz von Modellen, nämlich den Moving Average MA (q) und den autoregressiven Moving Average ARMA (p, q). Nun lernen Sie über diese beiden in Teil 2 dieses Artikels. Wie wir immer wieder erwähnen, werden diese letztlich zu der ARIMA - und GARCH-Modellfamilie führen, die beide eine viel bessere Anpassung an die serielle Korrelationskomplexität des Samp500 bieten. Dadurch können wir unsere Prognosen signifikant verbessern und letztendlich rentabler gestalten. Klicken Sie unten, um mehr darüber zu erfahren. Die Informationen auf dieser Website ist die Meinung der einzelnen Autoren auf der Grundlage ihrer persönlichen Beobachtung, Forschung und jahrelange Erfahrung. Der Herausgeber und seine Autoren sind nicht registrierte Anlageberater, Rechtsanwälte, CPAs oder andere Finanzdienstleister und machen keine Rechts-, Steuer-, Rechnungswesen, Anlageberatung oder andere professionelle Dienstleistungen. Die Informationen, die von dieser Web site angeboten werden, sind nur allgemeine Ausbildung. Weil jeder Einzelne sachliche Situation anders ist, sollte der Leser seinen persönlichen Berater suchen. Weder der Autor noch der Herausgeber übernehmen jegliche Haftung oder Verantwortung für Fehler oder Unterlassungen und haben weder eine Haftung noch Verantwortung gegenüber Personen oder Körperschaften in Bezug auf Schäden, die direkt oder indirekt durch die auf dieser Website enthaltenen Informationen verursacht oder vermutet werden. Benutzung auf eigene Gefahr. Darüber hinaus kann diese Website erhalten finanzielle Entschädigung von den Unternehmen erwähnt durch Werbung, Affiliate-Programme oder auf andere Weise. Preise und Angebote von Inserenten auf dieser Website ändern sich häufig, manchmal ohne Vorankündigung. Während wir uns bemühen, rechtzeitige und genaue Informationen aufrechtzuerhalten, können Angebot Details veraltet sein. Besucher sollten daher die Bedingungen dieser Angebote vor der Teilnahme an ihnen überprüfen. Der Autor und sein Herausgeber haften nicht für die Aktualisierung der Informationen und haften nicht für Inhalte, Produkte und Dienstleistungen von Drittanbietern, auch wenn sie über Hyperlinks oder Anzeigen auf dieser Website aufgerufen werden.

No comments:

Post a Comment